# High order numerical methods for nonlinear wave equations

#### Yan Xu

yxu@ustc.edu.cn http://staff.ustc.edu.cn/~yxu/

School of Mathematical Sciences University of Science and Technology of China

> Joint with Chi-Wang Shu shu@dam.brown.edu Division of Applied Mathematics Brown University



Supported by NSFC

Yan Xu, USTC IWIS-MASC, October 19, 2015

(日)

## Outline

1 Introduction to local discontinuous Galerkin (LDG) methods

- 2 The LDG method for the Camassa-Holm equation
- 3 LDG method for the Degasperis-Procesi equation

#### 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation



Yan Xu, USTC IWIS-MASC, October 19, 2015

<ロト < 同ト < 三ト <

Numerical results

#### Discontinuous Galerkin Methods

- Finite element method for approximating PDE.
- Piecewise polynomial completely discontinuous.





- First introduced in 1973 by Reed and Hill.
- Hyperbolic conservation law by Cockburn and Shu.
- According the search in Mathscinet, papers with key words "Discontinuous Galerkin"
  - Before 2000, 203 papers;
  - 2001-2014, 2357 papers.



2D Transport



## Advantages of DG methods:

- ✓ Wide Range of PDE's
- Easy handling complicated geometry and boundary conditions
- $\checkmark\,$  Allowing the hanging nodes
- $\checkmark\,$  Compact and then parallel efficiency.
- ✓ Easy h p adaptivity;
- ✓ Flexible choice of approximation spaces

## Numerical fluxes

#### Double-valued, need to pick/define one

$$\widehat{f(u_h)} = \widehat{f}(u_h^-, u_h^+)$$

$$\widehat{u}_h = \widehat{u}(u_h^-, u_h^+)$$

$$u_h^+$$

## Hanging node

Nonconforming Mesh and Variable Degree

## Disadvantages of DG methods:

- $\times$  more of degrees of freedom
- $\times$  Systems of equations difficult to solve
- $\times$  Techniques under development



#### DG scheme for hyperbolic conservation laws

$$u_t+f(u)_x=0.$$

Multiplying with a test function

$$\mathbf{v}\in V_h=\{\mathbf{v}:\mathbf{v}|_{I_j}\in \mathcal{P}^k(I_j), j=1,\cdots,N\}$$

and integrating by parts over a cell  $I_j = [x_{j-1/2}, x_{j+1/2}]$ , DG scheme: Find  $u \in V_h$  such that, for all  $v \in V_h$  and  $j = 1, \dots, N$ 

$$\int_{I_j} u_t v dx - \int_{I_j} f(u) v_x dx + \hat{f}_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^- - \hat{f}_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^+ = 0.$$

 $\hat{f}$  is the single value monotone numerical flux:

$$\hat{f}_{j+\frac{1}{2}} = \hat{f}(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+})$$

where  $\hat{f}(u, u) = f(u)$ (consistency);  $\hat{f}(\uparrow, \downarrow)$  (monotonicity) and  $\hat{f}$  is Lipschitz continuous with respect to both arguments.

Yan Xu, USTC IWIS–MASC, October 19, 2015



#### Introduction to local discontinuous Galerkin (LDG) methods:

Generalization of the DG method to PDEs containing higher spatial derivatives. For example, the heat equation

$$u_t - u_{xx} = 0$$

with proper boundary and initial conditions.





A straightforward generalization is replacing  $f(u) = -u_x$  in the DG scheme for the conservation law  $(u_t + f(u)_x = 0)$ : find  $u \in V_h$  such that, for all test functions  $v \in V_h$ ,

$$\int_{I_j} u_t v dx + \int_{I_j} u_x v_x dx - \widehat{u}_{xj+\frac{1}{2}} v_{j+\frac{1}{2}} + \widehat{u}_{xj-\frac{1}{2}} v_{j-\frac{1}{2}} = 0.$$

Considering that diffusion is isotropic, a nature choice of the flux could be the central flux  $% \left( {{{\bf{n}}_{\rm{c}}}} \right)$ 

$$\widehat{u}_{x_{j+\frac{1}{2}}} = \frac{1}{2} \left( (u_x)_{j+\frac{1}{2}}^- + (u_x)_{j+\frac{1}{2}}^+ \right)$$



< □ > < 同 >

< ∃ →

Numerical results

Conclusion

However, it has been proven in Zhang and Shu,  $\mathsf{M}^3\mathsf{AS}$  03 that the scheme is

- Consistent with the heat equation
- (very weakly) unstable



Yan Xu, USTC

IWIS-MASC, October 19, 2015

Introduction LDG method of CH equation LDG method for the DP equation Numerical results Conclusion

The LDG method for the heat equation (Bassi and Rebay, JCP 97; Cockburn and Shu, SINUM 98):

• Rewrite the heat equation as

$$u_t-q_x=0, \quad q-u_x=0.$$

• Find  $u, q \in V_h$  such that, for all  $v, w \in V_h$ ,

$$\begin{split} &\int_{l_j} u_t v dx + \int_{l_j} q v_x - \hat{q}_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^- + \hat{q}_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^+ = 0, \\ &\int_{l_j} q p dx + \int_{l_j} u p_x - \hat{u}_{j+\frac{1}{2}} p_{j+\frac{1}{2}}^- + \hat{u}_{j-\frac{1}{2}} p_{j-\frac{1}{2}}^+ = 0. \end{split}$$

q can be locally solved and eliminated, hence local DG.

よみ



#### The numerical flux is the following alternated flux

$$\hat{u}_{j+\frac{1}{2}} = u_{j+\frac{1}{2}}^{-}, \quad \hat{q}_{j+\frac{1}{2}} = q_{j+\frac{1}{2}}^{+},$$

or

$$\hat{u}_{j+\frac{1}{2}} = u_{j+\frac{1}{2}}^+, \quad \hat{q}_{j+\frac{1}{2}} = q_{j+\frac{1}{2}}^-.$$

Then we have

- L<sup>2</sup> stability
- Optimal convergence of  $\mathcal{O}(h^{k+1})$  in  $L^2$  for  $P^k$  elements.



- ∢ ≣ ▶



Table:  $L^2$  and  $L^{\infty}$  errors and orders of accuracy for the LDG method with alternated fluxes applied to the heat equation with an initial condition  $u(x,0) = \sin(x)$ , t = 1. Third order Runge-Kutta in time with a small  $\Delta t$  so that time error can be ignored.

|               | k = 1                |       |                    |       | k = 2                |       |                    |       |
|---------------|----------------------|-------|--------------------|-------|----------------------|-------|--------------------|-------|
| Δx            | L <sup>2</sup> error | order | $L^{\infty}$ error | order | L <sup>2</sup> error | order | $L^{\infty}$ error | order |
| $2\pi/20, u$  | 1.58E-03             | —     | 6.01E-03           | —     | 3.98E-05             | —     | 1.89E-04           | —     |
| $2\pi/20, q$  | 1.58E-03             |       | 6.01E-03           | —     | 3.98E-05             | —     | 1.88E-04           | —     |
| 2π/40, u      | 3.93E-04             | 2.00  | 1.51E-03           | 1.99  | 4.98E-06             | 3.00  | 2.37E-05           | 2.99  |
| $2\pi/40, q$  | 3.94E-04             | 2.00  | 1.51E-03           | 1.99  | 4.98E-06             | 3.00  | 2.37E-05           | 2.99  |
| $2\pi/80, u$  | 9.83E-05             | 2.00  | 3.78E-04           | 2.00  | 6.22E-07             | 3.00  | 2.97E-06           | 3.00  |
| $2\pi/80, q$  | 9.83E-05             | 2.00  | 3.78E-04           | 2.00  | 6.22E-07             | 3.00  | 2.97E-06           | 3.00  |
| $2\pi/160, u$ | 2.46E-05             | 2.00  | 9.45E-05           | 2.00  | 7.78E-08             | 3.00  | 3.71E-07           | 3.00  |
| $2\pi/160, q$ | 2.46E-05             | 2.00  | 9.45E-05           | 2.00  | 7.78E-08             | 3.00  | 3.71E-07           | 3.00  |



< ロ > < 同 > < 三 > < 三

TY INA よたそ

Main idea of LDG method for high order derivative equations

- Rewrite the high order derivative term into the proper first order equations.
- Use the DG method for the first order equations.
- The key point of the method is to design the numerical fluxes to ensure the stability.
  - Odd derivatives equation: upwinding principle.
  - Even derivatives equation: alternating fluxes.

#### Review paper

 Y. Xu and C.-W. Shu, Local discontinuous Galerkin methods for high-order time-dependent partial differential equations, Communications in Computational Physics, 7 (2010), pp. 1-46.



LDG methods for nonlinear dispersive equations

- KdV equation (Yan and Shu SINUM 2002, Xu-Shu CMAME 2007).
- KdV-Burgers equation, Kawahara equation (Xu-Shu, JCM 2004 ).
- Fully nonlinear K(m, n) and K(n, n, n) equations(Levy-Shu-Yan JCP 2004, Xu-Shu JCM 2004).
- Kadomtsev-Petviashvili equation (Xu-Shu, Physica D 2005).
- Zakharov-Kuznetsov equation (Xu-Shu Physica D 2005, Xu-Shu CMAME 2007).
- Ito-type coupled KdV equations (Xu-Shu CMAME 2006).

< 17 >

たみ

Numerical results

## Kadomtsev-Petviashvili equation (Physica D, 2005)



## Zakharov-Kuznetsov equation (Physica D, 2005)



<ロ> (日) (日) (日) (日) (日)

Yan Xu, USTC

IWIS-MASC, October 19, 2015



#### LDG methods for phase field models

- Cahn-Hilliard equation (Xia-Xu-Shu JCP 2007, Guo-Xu JSC 2014)
- Allen-Cahn/Cahn-Hilliard system (Xia-Xu-Shu, CICP 2009)
- Functionalized Cahn-Hilliard equation (Guo-Xu-Xu, JSC 2015)
- No-slop-selection thin film model (Xia, JCP 2015)
- Cahn-Hilliard-Hele-Shaw system (Guo-Xia-Xu, JCP 2014)
- Cahn-Hilliard-Brinkman system (Guo-Xu, JCP 2015)
- Phase field crystal equation (Guo-Xu, submitted)







Introduction LDG method of CH equation LDG method for the DP equation Numerical results

Conclusion

## LDG methods for nonlinear diffusion Kuramoto-Sivashinsky (CMAME 2006) equations

- Bi-harmonic equations (Yan-Shu JSC 2002, Dong-Shu SINUM 2009).
- Kuramoto-Sivashinsky equation (Xu-Shu, CMAME 2006).
- Surface diffusion of graphs and Willmore flow of graphs (Xu-Shu JSC 2009, Ji-Xu submitted 2009).
- Porous medium equation (Zhang-Wu JSC 2009).



Yan Xu, USTC IWIS–MASC, October 19, 2015



#### LDG methods for Schrödinger equation

- Nonlinear Schrödinger equations (Xu-Shu JCP 2005, Lu-Cai-Zhang IJAM 2005)
- Zakharov system (Xia-Xu-Shu JCP 2010)
- Stationary Schrödinger equations (Wang-Shu JSC 2009, Guo-Xu CICP 2014)
- Nonlinear Schrödinger-KdV System (Xia-Xu-Shu CICP 2014)
- Nonlinear Schrödinger equation with wave operator (Guo-Xu JSC 2014)





#### 2D Schrödinger equation (JCP, 2005)



#### 2D Zakharov system (JCP, 2010)

おちう



< □ > < 同 >

## LDG methods for phase transition problems

1D phase transition in solid (JSC 2014)



Yan Xu, USTC

Navier-Stokes-Korteweg (JCP, 2015)



(a) t=0



(b) t=1



(c) t=2



=2







IWIS-MASC, October 19, 2015

LDG methods for other equations

• Degasperis-Procesi (DP) equation (Xu-Shu, CICP 2011).

$$u_t - u_{xxt} + 4uu_x = 3u_xu_{xx} + uu_{xxx}$$

• Camassa-Holm (CH) equation (Xu-Shu, SINUM 2008).

$$u_t - u_{xxt} + 3uu_x = 2u_xu_{xx} + uu_{xxx}.$$

• Hunter-Saxton (HS) equation (Xu-Shu, SIJSC 2008 and JCM 2010).

$$u_{xxt} + 2u_xu_{xx} + uu_{xxx} = 0$$

Yan Xu, USTC

## Degasperis-Procesi (CICP)



#### Camassa-Holm (SINUM)



## Hunter-Saxton (SIJSC)



Family of third order dispersive PDE conservation laws

$$u_t + c_0 u_x + \kappa u_{xxx} - \epsilon^2 u_{txx} = (c_1 u^2 + c_2 u_x^2 + c_3 u u_{xx})_x,$$

where  $\kappa$ ,  $\epsilon$ ,  $c_0$ ,  $c_1$ ,  $c_2$ , and  $c_3$  are real constants.

#### Integrability

There are only three equations that satisfy the asymptotic integrability condition within this family

- KdV equation  $(\epsilon = c_2 = c_3 = 0)$ .
- Camassa-Holm equation  $(c_1 = -\frac{3c_3}{2\epsilon^2}, c_2 = \frac{c_3}{2}).$
- Degasperis-Procesi  $(c_1 = -\frac{2c_3}{2\epsilon^2}, c_2 = c_3).$

よみ



#### Camassa-Holm (CH) equation

$$u_t - u_{xxt} + 3uu_x = 2u_x u_{xx} + uu_{xxx}.$$

#### Degasperis-Procesi (DP) equation

$$u_t - u_{xxt} + 4uu_x = 3u_xu_{xx} + uu_{xxx}$$



## Energy

#### Camassa-Holm (CH) equation

$$H_2(u) = \int_R (u^2 + u_x^2) dx$$

Degasperis-Procesi (DP) equation

$$E_2(u) = \int_R (u - u_{xx}) v dx, \quad 4v - \partial_x^2 v = u$$

中国科学技术大学

<ロ> <同> <同> < 回> < 回>

TY ENOLOGY

## Solution

## Camassa-Holm (CH) equation

- Peaked Solution
- No shock wave solutions with initial data  $u_0 \in H^1(R)$

### Degasperis-Procesi (DP) equation

- Peaked Solution
- Shock wave solutions



< □ > < 同 >

< ∃ →

Introduction to local discontinuous Galerkin (LDG) methods

#### 2 The LDG method for the Camassa-Holm equation

3 LDG method for the Degasperis-Procesi equation

#### 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation





< □ > < 同 >

< ∃ →

TY NOLOCY INA よよそ

#### Camassa-Holm (CH) equation

$$u_t - u_{xxt} + 2\kappa u_x + 3uu_x = 2u_x u_{xx} + uu_{xxx},$$

where  $\kappa$  is a constant.

- *u* representing the free surface of water over a flat bed.
- A model for the propagation of the unidirectional gravitational waves in a shallow water approximation.
- It is completely integrable.
- It models wave breaking for a large class of initial data.

#### Energy

$$H_2(u) = \int_R (u^2 + u_x^2) dx$$

Yan Xu, USTC IWIS-MASC, October 19, 2015



#### Numerical challenge

- Such nonlinearly dispersive partial differential equations support peakon solutions.
- The lack of smoothness at the peak of the peakon introduces high-frequency dispersive errors into the calculation.
- It is a challenge to design stable and high-order accurate numerical schemes for solving this equation.



| LDG method of CH equation | LDG method for the DP equation | Numerical results |  |
|---------------------------|--------------------------------|-------------------|--|
|                           |                                |                   |  |
|                           |                                |                   |  |

## Equation

$$u - u_{xx} = q, \tag{1}$$

$$q_t + f(u)_x = \frac{1}{2}(u^2)_{xxx} - \frac{1}{2}((u_x)^2)_x$$
(2)



TY INA よ大な

э

< ロ > < 同 > < 回 > < 回 > .

#### The LDG method

• we rewrite the equation (1) as a first order system:

$$u-r_x=q,$$
  
$$r-u_x=0.$$

• q is assumed known and we would want to solve for u. The LDG method is formulated as follows: find  $u_h$ ,  $r_h \in V_h$  such that, for all test functions  $\rho$ ,  $\phi \in V_h$ ,

$$\int_{I_j} u_h \rho dx + \int_{I_j} r_h \rho_x dx - (\hat{r}_h \rho^-)_{j+\frac{1}{2}} + (\hat{r}_h \rho^+)_{j-\frac{1}{2}} = \int_{I_j} q_h \rho dx,$$
  
$$\int_{I_j} r_h \phi dx + \int_{I_j} u_h \phi_x dx - (\hat{u}_h \phi^-)_{j+\frac{1}{2}} + (\hat{u}_h \phi^+)_{j-\frac{1}{2}} = 0.$$

• Numerical flux: 
$$\hat{r}_h = r_h^-$$
,  $\hat{u}_h = u_h^+$ .



#### The LDG method (continued)

• For the equation (2), we can also rewrite it into a first order system:

$$q_t + f(u)_x - p_x + B(r)_x = 0,$$
  
 $p - (b(r)u)_x = 0,$   
 $r - u_x = 0,$ 

where 
$$B(r) = \frac{1}{2}r^2$$
 and  $b(r) = B'(r) = r$ .



< 口 > < 同 >

3



#### The LDG method (continued)

 Now we can define a local discontinuous Galerkin method, resulting in the following scheme: find q<sub>h</sub>, p<sub>h</sub>, r<sub>h</sub> ∈ V<sub>h</sub> such that, for all test functions φ, ψ, η ∈ V<sub>h</sub>,

$$\begin{aligned} \int_{l_{j}} (q_{h})_{t} \varphi dx &- \int_{l_{j}} (f(u_{h}) - p_{h} + B(r_{h})) \varphi_{x} dx \\ &+ ((\widehat{f} - \widehat{p}_{h} + \widehat{B(r_{h})}) \varphi^{-})_{j+\frac{1}{2}} - ((\widehat{f} - \widehat{p}_{h} + \widehat{B(r_{h})}) \varphi^{+})_{j-\frac{1}{2}} = 0, \\ \int_{l_{j}} p_{h} \psi dx + \int_{l_{j}} b(r_{h}) u_{h} \psi_{x} dx - (\widehat{b(r_{h})} \widetilde{u}_{h} \psi^{-})_{j+\frac{1}{2}} + (\widehat{b(r_{h})} \widetilde{u}_{h} \psi^{+})_{j-\frac{1}{2}} = 0, \\ \int_{l_{j}} r_{h} \phi dx + \int_{l_{j}} u_{h} \eta_{x} dx - (\widehat{u}_{h} \eta^{-})_{j+\frac{1}{2}} + (\widehat{u}_{h} \eta^{+})_{j-\frac{1}{2}} = 0. \end{aligned}$$

ちら

#### Numerical flux

• Alternate numerical fluxes

$$\widehat{p}_h = p_h^-, \ \widehat{u}_h = u_h^+, \ \widehat{B(r_h)} = B(r_h^-), \ \widetilde{u}_h = u_h^+.$$

• Central numerical flux

$$\widehat{b(r_h)} = \frac{B(r_h^+) - B(r_h^-)}{r_h^+ - r_h^-}$$

- $\widehat{f}(u_h^-, u_h^+)$ 
  - Central numerical flux:

$$\widehat{f}(u_h^-, u_h^+) = \frac{1}{2}(f(u_h^-) + f(u_h^+)),$$

Lax-Friedrichs flux

$$\widehat{f}(u_{h}^{-}, u_{h}^{+}) = \frac{1}{2}(f(u_{h}^{-}) + f(u_{h}^{+}) - \alpha(u_{h}^{+} - u_{h}^{-})), \quad \alpha = \max |f'(u_{h})|$$

Yan Xu, USTC IWIS-MASC, October 19, 2015

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TY NOLOGY NA よたそ

#### Algorithm flowchart

• We obtain  $q_h$  in the following matrix form

$$\boldsymbol{q}_h = \boldsymbol{A} \boldsymbol{u}_h.$$

• we obtain the LDG discretization of the residual  $-f(u)_x + \frac{1}{2}(u^2)_{xxx} - \frac{1}{2}((u_x)^2)_x$  in the vector form

$$(\boldsymbol{q}_h)_t = \operatorname{res}(\boldsymbol{u}_h).$$

• We then combine the above two equation to obtain

$$\mathsf{A}(\boldsymbol{u}_h)_t = \operatorname{res}(\boldsymbol{u}_h).$$

• We use a time discretization method to solve

$$(\boldsymbol{u}_h)_t = \mathbf{A}^{-1} \operatorname{res}(\boldsymbol{u}_h).$$

Yan Xu, USTC IWIS–MASC, October 19, 2015

## $L^2$ stability of the LDG method

The solution to the LDG schemes for the Camassa-Holm equation satisfies the  $L^2$  stability

•  $\widehat{f}(u_h^-, u_h^+)$ : central numerical flux

$$\frac{d}{dt}\int_0^L (u_h^2+r_h^2)dx=0.$$

•  $\hat{f}(u_h^-, u_h^+)$ : Lax-Friedrichs flux

$$\frac{d}{dt}\int_0^L (u_h^2+r_h^2)dx\leq 0.$$

中国科学技术大学

3

#### The main error estimate result

Let *u* be the exact solution of the Camassa-Holm equation, which is sufficiently smooth with bounded derivatives, and assume  $f \in C^3$ . For regular triangulations of I = (0, 1), if the finite element space  $V_h$  is the piecewise polynomials of degree  $k \ge 2$ , then for small enough *h* there holds the following error estimates

$$\|u - u_h\|^2 + \|r - r_h\|^2 \le Ch^{2k},$$
(3)

where the constant *C* depends on the final time *T*, *k*,  $||u||_{k+1}$ ,  $||r||_{k+1}$  and the bounds on the derivatives  $|f^{(m)}|$ , m = 1, 2, 3. Here  $||u||_{k+1}$  and  $||r||_{k+1}$  are the maximum over  $0 \le t \le T$  of the standard Sobolev k + 1 norm in space.


# Remark

- Although we could not obtain the optimal error estimates  $O(h^{k+1})$  for u due to some extra boundary terms arising from high order derivatives, numerical examples verify the optimal order  $O(h^{k+1})$  for u.
- For the solution  $r_h$ , our numerical results indicate that k-th order accuracy is sharp.



< 口 > < 同 >

## Main difficulty of the proof

- Nonlinear term.
- Lack of control on some of the jump terms at cell boundaries for high order derivatives term.
- Special projection is introduce to handle troublesome jump terms in the error equation.
- It is more challenging to perform L<sup>2</sup> a priori error estimates for nonlinear PDEs with high order derivatives than for first order hyperbolic PDEs



Introduction to local discontinuous Galerkin (LDG) methods

- 2 The LDG method for the Camassa-Holm equation
- 3 LDG method for the Degasperis-Procesi equation

#### 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation





< 17 ▶

< ∃ →

#### Degasperis-Procesi equation

$$u_t - u_{txx} + 4f(u)_x = f(u)_{xxx},$$

where  $f(u) = \frac{1}{2}u^2$ .

- DP equation support peakon solutions and shock solutions.
- The lack of smoothness of the solution introduces more difficulty in the numerical computation.



# Energy

# Camassa-Holm (CH) equation

$$H_2(u) = \int_R (u^2 + u_x^2) dx$$

Degasperis-Procesi (DP) equation

$$E_2(u) = \int_R (u - u_{xx}) v dx, \quad 4v - \partial_x^2 v = u$$

おおちろ

TY diNA

・ロット (雪) ( ) ( ) (

# Numerical difficulty

- Conservation laws of the DP equation are much weaker than those of the CH equation
- The conservation laws  $E_i(u)$  can not guarantee the boundedness of the slope of a wave in the  $L^2$ -norm.
- There is no way to find conservation laws controlling the  $H^1$ -norm, which plays a very important role in studying the CH equation.



たえ

# $L^2$ stability

• Auxiliary variable v which satisfies the following equation

$$4v - v_{xx} = u.$$

• Another form of the energy  $E_2(u)$ 

$$\frac{d}{dt}\int_{\Omega}\left(2v^{2}+\frac{5}{2}(v_{x})^{2}+\frac{1}{2}(v_{xx})^{2}\right)dx=0.$$

•  $L^2$  stability of u, i.e.

$$||u||_{L^2(R)} \leq 2\sqrt{2} ||u_0||_{L^2(R)}.$$

Yan Xu, USTC IWIS-MASC, October 19, 2015

< 17 >

< ∃ →

# LDG scheme (I) based on dispersive form We write the DP equation in the following form

$$u - u_{xx} = q,$$
 (4)  
 $q_t + 4f(u)_x = f(u)_{xxx}.$  (5)

< □ > < 同 >



TY

< 注入 < 注入

< □ > < 同 >

おちろ

#### The LDG method (I) continued

• we rewrite the equation (4) as a first order system:

$$\begin{aligned} q-r_x &= 0,\\ r-u_x &= 0. \end{aligned}$$

 q is assumed known and we would want to solve for u. The LDG method is formulated as follows: find u<sub>h</sub>, r<sub>h</sub> ∈ V<sub>h</sub> such that, for all test functions ρ, φ ∈ V<sub>h</sub>,

$$\begin{split} &\int_{I_j} q_h \rho dx + \int_{I_j} r_h \rho_x dx - (\widehat{r}_h \rho^-)_{j+\frac{1}{2}} + (\widehat{r}_h \rho^+)_{j-\frac{1}{2}} = 0, \\ &\int_{I_j} r_h \phi dx + \int_{I_j} u_h \phi_x dx - (\widehat{u}_h \phi^-)_{j+\frac{1}{2}} + (\widehat{u}_h \phi^+)_{j-\frac{1}{2}} = 0. \end{split}$$

• Numerical flux:  $\hat{r}_h = r_h^-$ ,  $\hat{u}_h = u_h^+$ .

Yan Xu, USTC IWIS-MASC, October 19, 2015

# The LDG method (I) continued

For the equation (5), we can also rewrite it into a first order system:

$$q_t + 4s - p_x = 0,$$
  

$$p - s_x = 0,$$
  

$$s - f(u)_x = 0.$$



< □ > < 同 >

< ∃ →

イロト イポト イヨト イヨト

TY NOLOGY NA よたそ

The LDG method (I) continued Find  $q_h$ ,  $p_h$ ,  $s_h \in V_h$  such that,  $\forall \varphi, \psi, \eta \in V_h$ ,  $\int_{I_i} (q_h)_t \varphi dx + \int_{I_i} 4s_h \varphi dx + \int_{I_i} p_h \varphi_x dx - (\widehat{p}_h \varphi^-)_{j+\frac{1}{2}} + (\widehat{p}_h \varphi^+)_{j-\frac{1}{2}} = 0,$  $\int_{L} p_{h}\psi dx + \int_{L} s_{h}\psi_{x}dx - (\widehat{s}_{h}\psi^{-})_{j+\frac{1}{2}} + (\widehat{s}_{h}\psi^{+})_{j-\frac{1}{2}} = 0,$  $\int_{L} s_{h} \eta dx + \int_{L} f(u_{h}) \eta_{x} dx - (\widehat{f} \eta^{-})_{j+\frac{1}{2}} + (\widehat{f} \eta^{+})_{j-\frac{1}{2}} = 0.$ 

The numerical fluxes are chosen as

$$\widehat{p}_h = p_h^-, \ \widehat{s}_h = s_h^+,$$

and  $\hat{f}(u_h^-, u_h^+)$  is a central flux or Lax-Friedrichs flux.

(a)

TY NOLOGY NA よたそ

#### Algorithm flowchart (I)

• We obtain  $q_h$  in the following matrix form

$$\boldsymbol{q}_h = \boldsymbol{A} \boldsymbol{u}_h.$$

• we obtain the LDG discretization of the residual  $4f(u)_x - f(u)_{xxx}$  in the vector form

$$(\boldsymbol{q}_h)_t = \operatorname{res}(\boldsymbol{u}_h).$$

• We then combine the above two equation to obtain

$$\mathsf{A}(\boldsymbol{u}_h)_t = \operatorname{res}(\boldsymbol{u}_h).$$

We use a time discretization method to solve

$$(\boldsymbol{u}_h)_t = \mathbf{A}^{-1} \operatorname{res}(\boldsymbol{u}_h).$$

Yan Xu, USTC IWIS-MASC, October 19, 2015

Numerical results (

LDG scheme (II) based on hyperbolic-elliptic form We write the DP equation in the following form

$$u_t + f(u)_x + p = 0,$$
  
$$p - p_{xx} = 3f(u)_x.$$

We rewrite the equation as a first order system:

Yan Xu.

$$u_t + q + p = 0,$$
  

$$p - s_x = 3q,$$
  

$$s - p_x = 0,$$
  

$$q - f(u)_x = 0.$$

USTC

IWIS–MASC, October 19, 2015

よる

TY NOLOCT NA よちを

# LDG scheme (II) continued

Find  $u_h$ ,  $s_h$ ,  $p_h$ ,  $q_h \in V_h$  such that,  $\forall \varphi$ ,  $\psi$ ,  $\eta \in V_h$ ,

$$\begin{split} &\int_{I_j} (u_h)_t \varphi dx + \int_{I_j} (q_h + p_h) \varphi dx = 0, \\ &\int_{I_j} p_h \psi dx + \int_{I_j} s_h \psi_x dx - (\widehat{s}_h \psi^-)_{j+\frac{1}{2}} + (\widehat{s}_h \psi^+)_{j-\frac{1}{2}} = 3 \int_{I_j} q_h \psi dx, \\ &\int_{I_j} s_h \eta dx + \int_{I_j} p_h \eta_x dx - (\widehat{p}_h \eta^-)_{j+\frac{1}{2}} + (\widehat{p}_h \eta^+)_{j-\frac{1}{2}} = 0, \\ &\int_{I_j} q_h \rho dx + \int_{I_j} f(u_h) \rho_x dx - (\widehat{f} \rho^-)_{j+\frac{1}{2}} + (\widehat{f} \rho^+)_{j-\frac{1}{2}} = 0. \end{split}$$

Numerical fluxes are chosen as

$$\widehat{p}_h = p_h^-, \ \widehat{s}_h = s_h^+.$$

Here  $\hat{f}(u_h^-, u_h^+)$  is a central flux or Lax-Friedrichs flux.

TY NOLOCY INA よよそ

・ロッ ・ 一 ・ ・ ・ ・

### Algorithm flowchart (II)

• Given the solution  $u_h$  at time level n, we first get  $\boldsymbol{q}_h$ .

$$\boldsymbol{q}_h = \operatorname{res}(\boldsymbol{u}_h).$$

• We obtain  $p_h$  in the following matrix form

$$\boldsymbol{p}_h = 3\boldsymbol{\mathsf{A}}^{-1}\boldsymbol{q}_h.$$

Using the solution *q<sub>h</sub>*, *p<sub>h</sub>* to computing discretization of the residual *p* + *q*, then we obtain

$$(\boldsymbol{u}_h)_t = \boldsymbol{q}_h + \boldsymbol{p}_h.$$

Any standard ODE solvers can be used here, for example the Runge-Kutta methods.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

TY NA よよそ

## Stability of the LDG method (I) and (II)

- Energy stability of the solution  $v_h$ 
  - $\hat{f}(u_h^-, u_h^+)$ : central numerical flux

$$\frac{d}{dt}\int_{\Omega}\left(2v_h^2+\frac{5}{2}w_h^2+\frac{1}{2}z_h^2\right)dx=0.$$

•  $\hat{f}(u_h^-, u_h^+)$ : Lax-Friedrichs flux

$$\frac{d}{dt}\int_{\Omega}\left(2v_h^2+\frac{5}{2}w_h^2+\frac{1}{2}z_h^2\right)dx\leq 0.$$

where  $w_h$  and  $z_h$  are approximation of  $v_x$  and  $v_{xx}$ .

•  $L^2$  stability of solution  $u_h$ 

$$||u_h||_{L^2(\Omega)} \leq 2\sqrt{2}||u_0||_{L^2(\Omega)}.$$

Yan Xu, USTC IWIS-MASC, October 19, 2015



# Total variation bounded property for the $P^0$ case

 $\operatorname{TVM}(u_h^n) \leq \exp(CT)\operatorname{TVM}(u^0),$ 

where 
$$\operatorname{TVM}(u_h) = \sum_{j=1}^J |\Delta_+ u_j|$$
.



・ロッ ・ 一 ・ ・ ヨッ ・

# Outline

Introduction to local discontinuous Galerkin (LDG) methods

- 2 The LDG method for the Camassa-Holm equation
- 3 LDG method for the Degasperis-Procesi equation

### 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation

# 5 Conclusion and future work

Yan Xu, USTC IWIS-MASC, October 19, 2015

TY NOLOCY NA よよそ

### Smooth solution

Smooth traveling waves are solution of the form

$$u(x,t)=\phi(x-ct)$$

where  $\boldsymbol{\phi}$  is solution of second-order ordinary differential equation

$$\phi_{\mathsf{x}\mathsf{x}} = \phi - \frac{\alpha}{(\phi - c)^2}.$$

 $\alpha = c = 3$ . The initial conditions for  $\phi$  is

$$\phi(0)=1, \quad \frac{d\phi}{dx}(0)=0.$$

It gives rise to a smooth traveling wave with period  $a \simeq 6.46954603635$ .

< 口 > < 同 >

• = • •



Table: Accuracy test for the CH equation. Periodic boundary condition. Uniform meshes with N cells at time t = 0.5.

|                |    | $u - u_h$            |       |                    |       | $r - r_h$            |       |                    |       |
|----------------|----|----------------------|-------|--------------------|-------|----------------------|-------|--------------------|-------|
|                | N  | L <sup>2</sup> error | order | $L^{\infty}$ error | order | L <sup>2</sup> error | order | $L^{\infty}$ error | order |
|                | 10 | 1.42E-01             | -     | 3.08E-01           | -     | 1.42E-01             | -     | 3.08E-01           | -     |
| P <sup>0</sup> | 20 | 7.95E-02             | 0.84  | 1.77E-01           | 0.80  | 7.95E-02             | 0.83  | 1.77E-01           | 0.57  |
|                | 40 | 4.23E-02             | 0.91  | 9.41E-01           | 0.91  | 4.23E-02             | 0.94  | 9.41E-02           | 0.87  |
|                | 80 | 2.18E-02             | 0.95  | 4.83E-02           | 0.96  | 2.18E-02             | 0.98  | 4.83E-02           | 0.97  |
|                | 10 | 1.16E-02             | -     | 6.63E-02           | -     | 1.16E-02             | -     | 6.63E-02           | -     |
| $P^1$          | 20 | 3.12E-03             | 1.90  | 1.86E-02           | 1.84  | 3.12E-03             | 0.68  | 1.86E-02           | 0.24  |
|                | 40 | 8.05E-04             | 1.95  | 4.76E-03           | 1.96  | 8.05E-04             | 0.85  | 4.76E-03           | 0.63  |
|                | 80 | 2.04E-04             | 1.98  | 1.19E-02           | 2.00  | 2.04E-04             | 0.93  | 1.19E-03           | 0.87  |
|                | 10 | 1.41E-03             | -     | 6.75E-03           | -     | 1.41E-03             | -     | 6.75E-03           | -     |
| P <sup>2</sup> | 20 | 1.49E-04             | 3.24  | 9.06E-04           | 2.90  | 1.49E-04             | 2.64  | 9.06E-04           | 2.64  |
|                | 40 | 1.70E-05             | 3.13  | 9.85E-05           | 3.20  | 1.70E-05             | 2.06  | 9.85E-05           | 1.45  |
|                | 50 | 8.95E-06             | 2.88  | 4.96E-05           | 3.07  | 8.95E-06             | 1.95  | 4.96E-05           | 1.77  |





#### Peakon solution

In the single peak case, the initial condition is

$$u_0(x) = \begin{cases} \frac{c}{\cosh(a/2)} \cosh(x - x_0), & |x - x_0| \le a/2, \\ \frac{c}{\cosh(a/2)} \cosh(a - (x - x_0)), & |x - x_0| > a/2, \end{cases}$$

where  $x_0$  is the position of the trough and *a* is the period. We present the wave propagation for the CH equation with parameters c = 1, a = 30 and  $x_0 = -5$ . The computational domain is [0, a].  $P^5$  element with N = 320 cells.



たみ



TY NoLocr NA よたそ

#### Two-peakon interaction

In this example we consider the two-Peakon interaction of the CH equation with the initial condition

$$u_0(x)=\phi_1(x)+\phi_2(x),$$

where

$$\phi_i(x) = \begin{cases} \frac{c_i}{\cosh(a/2)} \cosh(x - x_i), & |x - x_i| \le a/2, \\ \frac{c_i}{\cosh(a/2)} \cosh(a - (x - x_i)), & |x - x_i| > a/2, \end{cases}$$

$$i = 1, 2.$$

The parameters are  $c_1 = 2$ ,  $c_2 = 1$ ,  $x_1 = -5$ ,  $x_2 = 5$ , a = 30. The computational domain is [0, a].  $P^5$  element with N = 320 cells.





#### Three-peakon interaction

In this example we consider the three-Peakon interaction of the CH equation with the initial condition

$$u_0(x) = \phi_1(x) + \phi_2(x) + \phi_3(x),$$

where  $\phi_i$ , i = 1, 2, 3 are defined as before. The parameters are  $c_1 = 2$ ,  $c_2 = 1$ ,  $c_3 = 0.8$ ,  $x_1 = -5$ ,  $x_2 = -3$ ,  $x_3 = -1$ , a = 30. The computational domain is [0, a].  $P^5$  element with N = 320 cells.







#### Solution with a discontinuous derivative

In this example we consider a initial data function  $u_0$  which has a discontinuous derivative. The initial condition is

$$u_0(x) = rac{10}{(3+|x|)^2}.$$

The computational domain is [-30, 30].  $P^2$  element with N = 640.



< 口 > < 同 >

< ∃ →





#### Break up of the plateau traveling wave

A cut-off peakon, i.e. a plateau function  $u(x, t) = \phi(x - ct)$  with

$$\phi(x)=\left\{egin{array}{ll} ce^{x+k}, & x\leq -k,\ c, & |x|\leq k,\ ce^{-x+k}, & x\geq k. \end{array}
ight.$$

We put c = 0.6 and k = 5. The computational domain is [-40, 40].  $P^2$  element with N = 800 cells.





< ロ > < 同 > < 三 > < 三

# Outline

- 3 LDG method for the Degasperis-Procesi equation

# 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation

Yan Xu. USTC IWIS-MASC. October 19, 2015

DP equation Numerical results

#### Accuracy test

Table: Accuracy test for the DP equation with the exact solution  $u(x,t) = ce^{-|x-ct|}$ . Periodic boundary condition. c = 0.25. Uniform meshes with N cells at time t = 1.

|                |     | Scheme (I)           |       |                    |       | Scheme (II)          |       |                    |       |
|----------------|-----|----------------------|-------|--------------------|-------|----------------------|-------|--------------------|-------|
|                | N   | L <sup>2</sup> error | order | $L^{\infty}$ error | order | L <sup>2</sup> error | order | $L^{\infty}$ error | order |
|                | 20  | 6.62E-03             | -     | 6.84E-02           | -     | 6.62E-03             | -     | 6.84E-02           | -     |
| $p^0$          | 40  | 1.98E-03             | 1.74  | 2.18E-02           | 1.65  | 1.98E-03             | 1.74  | 2.18E-02           | 1.65  |
|                | 80  | 8.56E-04             | 1.21  | 1.02E-02           | 1.09  | 8.56E-04             | 1.21  | 1.02E-02           | 1.09  |
|                | 160 | 4.76E-04             | 0.85  | 6.39E-03           | 0.68  | 4.76E-04             | 0.85  | 6.39E-03           | 0.68  |
|                | 20  | 2.31E-03             | -     | 3.19E-02           | -     | 2.31E-03             | -     | 3.19E-02           | -     |
| $p^1$          | 40  | 1.73E-04             | 3.74  | 2.42E-03           | 3.71  | 1.73E-04             | 3.74  | 2.43E-03           | 3.71  |
|                | 80  | 3.92E-05             | 2.14  | 5.31E-04           | 2.19  | 3.92E-05             | 2.14  | 5.31E-04           | 2.19  |
|                | 160 | 1.08E-05             | 1.86  | 1.88E-04           | 1.50  | 1.08E-05             | 1.86  | 1.88E-04           | 1.50  |
|                | 20  | 3.90E-04             | -     | 6.61E-03           | -     | 3.90E-04             | -     | 6.61E-03           | -     |
| p <sup>2</sup> | 40  | 3.35E-05             | 3.54  | 5.25E-04           | 3.93  | 3.35E-05             | 3.54  | 4.33E-04           | 3.93  |
|                | 80  | 4.07E-06             | 3.04  | 5.25E-05           | 3.04  | 4.07E-06             | 3.04  | 5.25E-05           | 3.04  |
|                | 160 | 5.77E-07             | 2.82  | 7.13E-06           | 2.88  | 5.77E-07             | 2.82  | 7.13E-06           | 2.88  |
|                | 10  | 1.49E-03             | -     | 1.77E-02           | -     | 1.49E-03             | -     | 1.77E-02           | -     |
| $p^3$          | 20  | 1.51E-04             | 3.30  | 2.69E-03           | 2.72  | 1.51E-04             | 3.30  | 2.69E-03           | 2.72  |
|                | 40  | 7.64E-06             | 4.30  | 1.32E-04           | 4.35  | 7.64E-06             | 4.31  | 1.32E-04           | 4.36  |
|                | 80  | 1.60E-07             | 5.58  | 2.13E-06           | 5.95  | 1.60E-07             | 5.58  | 2.13E-06           | 5.95  |
|                | 10  | 7.07E-03             | -     | 7.09E-02           | -     | 7.07E-03             | -     | 7.09E-02           | -     |
| $p^4$          | 20  | 1.72E-04             | 5.36  | 2.75E-03           | 4.69  | 1.72E-04             | 5.36  | 2.76E-03           | 4.68  |
|                | 40  | 4.68E-06             | 5.20  | 8.45E-05           | 5.02  | 4.68E-06             | 5.20  | 8.45E-05           | 5.03  |
|                | 80  | 8.30E-08             | 5.82  | 1.31E-06           | 6.01  | 8.30E-08             | 5.82  | 1.31E-06           | 6.01  |



Yan Xu, USTC

IWIS-MASC, October 19, 2015

TY NOLOGY

おちう

Numerical results

#### Peakon solution



Figure: The peakon profile of the DP equation with the exact solution  $u(x, t) = e^{-|x-t|}$ . Periodic boundary condition in [-40, 40].  $P^4$  elements and a uniform mesh with N = 228 cells.

#### Two-peakon interaction



Figure: The two-anti-peakon interaction of the DP equation. Periodic boundary condition in [-40, 40].  $P^3$  elements and a uniform mesh with N = 512 cells.



TY NOLOCY

おちう

#### Shock peakon solution



Figure: Shock peakon solution of the DP equation with the exact solution  $u(x, t) = -\text{sign}(x)e^{-|x|}/(1 + t)$ . Periodic boundary condition in [-30, 30].  $P^4$  elements and a uniform mesh with N = 228 cells.

TY NOLOGY

おちろ

#### Shock formation



Figure: Shock formation of the DP equation with the initial condition  $u_0(x) = e^{0.5x^2} \sin(\pi x)$ . Periodic boundary condition in [-2, 2].  $P^3$  elements and a uniform mesh with N = 100 cells.
### Peakon and anti-Peakon interaction (Symmetric)



Figure: Symmetric peak and antipeak interaction of the DP equation. Periodic boundary condition in [-25, 25].  $P^3$  elements and a uniform mesh with N = 256 cells.



TY NOLOGY

おちえ

### Peakon and anti-Peakon interaction (Nonsymmetric)



Figure: Nonsymmetric peak and antipeak interaction of the DP equation. Periodic boundary condition in [-25, 25].  $P^3$  elements and a uniform mesh with N = 256 cells.

TY NOLOCY

おちう

00000000000000000000000

### Triple interaction



Figure: Peakon, shock peakon and anti-peakon of the DP equation. Periodic boundary condition in [-25, 25].  $P^3$  elements and a uniform mesh with N = 256 cells.

Introduction to local discontinuous Galerkin (LDG) methods

- 2 The LDG method for the Camassa-Holm equation
- 3 LDG method for the Degasperis-Procesi equation

## 4 Numerical results

- Numerical results for the CH equation
- Numerical results for Degasperis-Procesi equation

# **5** Conclusion and future work



< □ > < 同 >



## Conclusion

- LDG methods to solve the nonlinear equation.
- Stability is proven for the schemes for general solutions .
- Numerical examples are given to illustrate the accuracy and capability of the methods.

## Future work

- Total variation bounded property for the high order case.
- a priori error estimates of numerical solutions.





### Reference

More information about the algorithm and theoretical analysis can be found in:

http://staff.ustc.edu.cn/~y×u/



< □ > < 同 >