High order numerical methods for nonlinear wave equations

Yan Xu
yxu＠ustc．edu．cn
http：／／staff．ustc．edu．cn／～yxu／
School of Mathematical Sciences
University of Science and Technology of China

Joint with Chi－Wang Shu
shu＠dam．brown．edu
Division of Applied Mathematics
Brown University
Supported by NSFC

Outline

（1）Introduction to local discontinuous Galerkin（LDG）methods
（2）The LDG method for the Camassa－Holm equation
（3）LDG method for the Degasperis－Procesi equation
（4）Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

Discontinuous Galerkin Methods

- Finite element method for approximating PDE.
- Piecewise polynomial completely discontinuous.

Continuous Galerkin FEM

Discontinuous Galerkin FEM

- Local variational formulation (element-by-element).
- First introduced in 1973 by Reed and Hill.
- Hyperbolic conservation law by Cockburn and Shu.
- According the search in Mathscinet, papers with key words "Discontinuous Galerkin"
- Before 2000, 203 papers;
- 2001-2014, 2357 papers.

1D Transport

2D Transport

Advantages of DG methods:

\checkmark Wide Range of PDE's
\checkmark Easy handling complicated geometry and boundary conditions
\checkmark Allowing the hanging nodes
\checkmark Compact and then parallel efficiency.
\checkmark Easy $h-p$ adaptivity;
\checkmark Flexible choice of approximation spaces

Disadvantages of DG methods:
\times more of degrees of freedom
\times Systems of equations difficult to solve
\times Techniques under development

Numerical fluxes

Double-valued, need to pick/define one

$$
\begin{aligned}
& \widehat{f\left(u_{h}\right)}=\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right) \\
& \widehat{u}_{h}=\widehat{u}\left(u_{h}^{-}, u_{h}^{+}\right)
\end{aligned}
$$

Hanging node

Nonconforming Mesh and Variable Degree

DG scheme for hyperbolic conservation laws

$$
u_{t}+f(u)_{x}=0
$$

Multiplying with a test function

$$
v \in V_{h}=\left\{v:\left.v\right|_{I_{j}} \in P^{k}\left(I_{j}\right), j=1, \cdots, N\right\}
$$

and integrating by parts over a cell $l_{j}=\left[x_{j-1 / 2}, x_{j+1 / 2}\right]$, DG scheme:
Find $u \in V_{h}$ such that, for all $v \in V_{h}$ and $j=1, \cdots, N$

$$
\int_{I_{j}} u_{t} v d x-\int_{I_{j}} f(u) v_{x} d x+\hat{f}_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^{-}-\hat{f}_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^{+}=0
$$

\hat{f} is the single value monotone numerical flux:

$$
\hat{f}_{j+\frac{1}{2}}=\hat{f}\left(u_{j+\frac{1}{2}}^{-}, u_{j+\frac{1}{2}}^{+}\right)
$$

where $\hat{f}(u, u)=f(u)$ (consistency); $\hat{f}(\uparrow, \downarrow)$ (monotonicity) and \hat{f} is Lipschitz continuous with respect to both arguments.

Introduction to local discontinuous Galerkin（LDG）methods：
Generalization of the DG method to PDEs containing higher spatial derivatives．For example，the heat equation

$$
u_{t}-u_{x x}=0
$$

with proper boundary and initial conditions．

A straightforward generalization is replacing $f(u)=-u_{x}$ in the DG scheme for the conservation law $\left(u_{t}+f(u)_{x}=0\right)$ ：find $u \in V_{h}$ such that， for all test functions $v \in V_{h}$ ，

$$
\int_{I_{j}} u_{t} v d x+\int_{I_{j}} u_{x} v_{x} d x-\widehat{u}_{x j+\frac{1}{2}} v_{j+\frac{1}{2}}+\widehat{u}_{x_{j-\frac{1}{2}}} v_{j-\frac{1}{2}}=0
$$

Considering that diffusion is isotropic，a nature choice of the flux could be the central flux

$$
\widehat{u}_{x j+\frac{1}{2}}=\frac{1}{2}\left(\left(u_{x}\right)_{j+\frac{1}{2}}^{-}+\left(u_{x}\right)_{j+\frac{1}{2}}^{+}\right)
$$

However，it has been proven in Zhang and Shu，M ${ }^{3}$ AS 03 that the scheme is
－Consistent with the heat equation
－（very weakly）unstable

The LDG method for the heat equation（Bassi and Rebay，JCP 97； Cockburn and Shu，SINUM 98）：
－Rewrite the heat equation as

$$
u_{t}-q_{x}=0, \quad q-u_{x}=0
$$

－Find $u, q \in V_{h}$ such that，for all $v, w \in V_{h}$ ，

$$
\begin{aligned}
& \int_{l_{j}} u_{t} v d x+\int_{l_{j}} q v_{x}-\hat{q}_{j+\frac{1}{2}} v_{j+\frac{1}{2}}^{-}+\hat{q}_{j-\frac{1}{2}} v_{j-\frac{1}{2}}^{+}=0, \\
& \int_{l_{j}} q p d x+\int_{l_{j}} u p_{x}-\hat{u}_{j+\frac{1}{2}} p_{j+\frac{1}{2}}^{-}+\hat{u}_{j-\frac{1}{2}} p_{j-\frac{1}{2}}^{+}=0 .
\end{aligned}
$$

q can be locally solved and eliminated，hence local DG．

The numerical flux is the following alternated flux

$$
\hat{u}_{j+\frac{1}{2}}=u_{j+\frac{1}{2}}^{-}, \quad \hat{q}_{j+\frac{1}{2}}=q_{j+\frac{1}{2}}^{+},
$$

or

$$
\hat{u}_{j+\frac{1}{2}}=u_{j+\frac{1}{2}}^{+}, \quad \hat{q}_{j+\frac{1}{2}}=q_{j+\frac{1}{2}}^{-} .
$$

Then we have
－L^{2} stability
－Optimal convergence of $\mathcal{O}\left(h^{k+1}\right)$ in L^{2} for P^{k} elements．

Table：L^{2} and L^{∞} errors and orders of accuracy for the LDG method with alternated fluxes applied to the heat equation with an initial condition $u(x, 0)=\sin (x), t=1$ ．Third order Runge－Kutta in time with a small Δt so that time error can be ignored．

	$k=1$				$k=2$			
Δx	L^{2} error	order	L^{∞} error	order	L^{2} error	order	L^{∞} error	order
$2 \pi / 20, u$	$1.58 \mathrm{E}-03$	-	$6.01 \mathrm{E}-03$	-	$3.98 \mathrm{E}-05$	-	$1.89 \mathrm{E}-04$	-
$2 \pi / 20, q$	$1.58 \mathrm{E}-03$	-	$6.01 \mathrm{E}-03$	-	$3.98 \mathrm{E}-05$	-	$1.88 \mathrm{E}-04$	-
$2 \pi / 40, u$	$3.93 \mathrm{E}-04$	2.00	$1.51 \mathrm{E}-03$	1.99	$4.98 \mathrm{E}-06$	3.00	$2.37 \mathrm{E}-05$	2.99
$2 \pi / 40, q$	$3.94 \mathrm{E}-04$	2.00	$1.51 \mathrm{E}-03$	1.99	$4.98 \mathrm{E}-06$	3.00	$2.37 \mathrm{E}-05$	2.99
$2 \pi / 80, u$	$9.83 \mathrm{E}-05$	2.00	$3.78 \mathrm{E}-04$	2.00	$6.22 \mathrm{E}-07$	3.00	$2.97 \mathrm{E}-06$	3.00
$2 \pi / 80, q$	$9.83 \mathrm{E}-05$	2.00	$3.78 \mathrm{E}-04$	2.00	$6.22 \mathrm{E}-07$	3.00	$2.97 \mathrm{E}-06$	3.00
$2 \pi / 160, u$	$2.46 \mathrm{E}-05$	2.00	$9.45 \mathrm{E}-05$	2.00	$7.78 \mathrm{E}-08$	3.00	$3.71 \mathrm{E}-07$	3.00
$2 \pi / 160, q$	$2.46 \mathrm{E}-05$	2.00	$9.45 \mathrm{E}-05$	2.00	$7.78 \mathrm{E}-08$	3.00	$3.71 \mathrm{E}-07$	3.00

Main idea of LDG method for high order derivative equations
－Rewrite the high order derivative term into the proper first order equations．
－Use the DG method for the first order equations．
－The key point of the method is to design the numerical fluxes to ensure the stability．
－Odd derivatives equation：upwinding principle．
－Even derivatives equation：alternating fluxes．

Review paper

－Y．Xu and C．－W．Shu，Local discontinuous Galerkin methods for high－order time－dependent partial differential equations， Communications in Computational Physics， 7 （2010），pp． 1－46．

LDG methods for nonlinear dispersive equations
－KdV equation（Yan and Shu SINUM 2002，Xu－Shu CMAME 2007）．
－KdV－Burgers equation，Kawahara equation（Xu－Shu，JCM 2004 ）．
－Fully nonlinear $K(m, n)$ and $K(n, n, n)$ equations（Levy－Shu－Yan JCP 2004，Xu－Shu JCM 2004）．
－Kadomtsev－Petviashvili equation（Xu－Shu，Physica D 2005）．
－Zakharov－Kuznetsov equation（Xu－Shu Physica D 2005， Xu－Shu CMAME 2007）．
－Ito－type coupled KdV equations（Xu－Shu CMAME 2006）．

Kadomtsev-Petviashvili equation (Physica D, 2005)

Zakharov-Kuznetsov equation (Physica D, 2005)

LDG methods for phase field models
－Cahn－Hilliard equation（Xia－Xu－Shu JCP 2007，Guo－Xu JSC 2014）
－Allen－Cahn／Cahn－Hilliard system（Xia－Xu－Shu，CICP 2009）
－Functionalized Cahn－Hilliard equation（Guo－Xu－Xu，JSC 2015）
－No－slop－selection thin film model（Xia，JCP 2015）
－Cahn－Hilliard－Hele－Shaw system（Guo－Xia－Xu，JCP 2014）
－Cahn－Hilliard－Brinkman system（Guo－Xu，JCP 2015）
－Phase field crystal equation（Guo－Xu，submitted）

2D Cahn－Hilliard equation（JSC，2014）

3D Functionalized Cahn－Hilliard（JSC， 2015）

中国紏学奴求大学

LDG methods for nonlinear diffusion equations
－Bi－harmonic equations（Yan－Shu JSC 2002，Dong－Shu SINUM 2009）．
－Kuramoto－Sivashinsky equation （Xu－Shu，CMAME 2006）．
－Surface diffusion of graphs and Willmore flow of graphs （Xu－Shu JSC 2009，Ji－Xu submitted 2009）．
－Porous medium equation （Zhang－Wu JSC 2009）．

Kuramoto－Sivashinsky（CMAME 2006）

[^0]LDG methods for Schrödinger equation
－Nonlinear Schrödinger equations（Xu－Shu JCP 2005， Lu－Cai－Zhang IJAM 2005 ）
－Zakharov system（Xia－Xu－Shu JCP 2010）
－Stationary Schrödinger equations（Wang－Shu JSC 2009， Guo－Xu CICP 2014 ）
－Nonlinear Schrödinger－KdV System（Xia－Xu－Shu CICP 2014）
－Nonlinear Schrödinger equation with wave operator（Guo－Xu JSC 2014）

中国紏学奴求大学

2D Schrödinger equation（JCP，2005）

2D Zakharov system（JCP，2010）

LDG methods for phase transition problems

1D phase transition in solid (JSC 2014) Navier-Stokes-Korteweg (JCP, 2015)

(a) $\mathrm{t}=\mathrm{0}$

(c) $\mathrm{t}=2$

(b) $t=1$

(d) $t=3$

LDG methods for other equations

- Degasperis-Procesi (DP) equation (Xu-Shu, CICP 2011).

$$
u_{t}-u_{x x t}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x}
$$

- Camassa-Holm (CH) equation (Xu-Shu, SINUM 2008).

$$
u_{t}-u_{x x t}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x} .
$$

- Hunter-Saxton (HS) equation (Xu-Shu, SIJSC 2008 and JCM 2010).

$$
u_{x x t}+2 u_{x} u_{x x}+u u_{x x x}=0
$$

Family of third order dispersive PDE conservation laws

$$
u_{t}+c_{0} u_{x}+\kappa u_{x x x}-\epsilon^{2} u_{t x x}=\left(c_{1} u^{2}+c_{2} u_{x}^{2}+c_{3} u u_{x x}\right)_{x}
$$

where $\kappa, \epsilon, c_{0}, c_{1}, c_{2}$ ，and c_{3} are real constants．

Integrability

There are only three equations that satisfy the asymptotic integrability condition within this family
－ KdV equation $\left(\epsilon=c_{2}=c_{3}=0\right)$ ．
－Camassa－Holm equation $\left(c_{1}=-\frac{3 c_{3}}{2 \epsilon^{2}}, c_{2}=\frac{c_{3}}{2}\right)$ ．
－Degasperis－Procesi $\left(c_{1}=-\frac{2 c_{3}}{2 \epsilon^{2}}, c_{2}=c_{3}\right)$ ．

Camassa－Holm（CH）equation

$$
u_{t}-u_{x x t}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

Degasperis－Procesi（DP）equation

$$
u_{t}-u_{x x t}+4 u u_{x}=3 u_{x} u_{x x}+u u_{x x x}
$$

Energy

Camassa－Holm（CH）equation

$$
H_{2}(u)=\int_{R}\left(u^{2}+u_{x}^{2}\right) d x
$$

Degasperis－Procesi（DP）equation

$$
E_{2}(u)=\int_{R}\left(u-u_{x x}\right) v d x, \quad 4 v-\partial_{x}^{2} v=u
$$

Solution

Camassa－Holm（CH）equation
－Peaked Solution
－No shock wave solutions with initial data $u_{0} \in H^{1}(R)$

Degasperis－Procesi（DP）equation
－Peaked Solution
－Shock wave solutions
（1）Introduction to local discontinuous Galerkin（LDG）methods
（2）The LDG method for the Camassa－Holm equation
（3）LDG method for the Degasperis－Procesi equation
（4）Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

ofscifvce trchiong
OF

Camassa－Holm（CH）equation

$$
u_{t}-u_{x x t}+2 \kappa u_{x}+3 u u_{x}=2 u_{x} u_{x x}+u u_{x x x}
$$

where κ is a constant．
－u representing the free surface of water over a flat bed．
－A model for the propagation of the unidirectional gravitational waves in a shallow water approximation．
－It is completely integrable．
－It models wave breaking for a large class of initial data．

Energy

$$
H_{2}(u)=\int_{R}\left(u^{2}+u_{x}^{2}\right) d x
$$

Numerical challenge

－Such nonlinearly dispersive partial differential equations support peakon solutions．
－The lack of smoothness at the peak of the peakon introduces high－frequency dispersive errors into the calculation．
－It is a challenge to design stable and high－order accurate numerical schemes for solving this equation．

Equation

$$
\begin{align*}
& u-u_{x x}=q \tag{1}\\
& q_{t}+f(u)_{x}=\frac{1}{2}\left(u^{2}\right)_{x x x}-\frac{1}{2}\left(\left(u_{x}\right)^{2}\right)_{x} \tag{2}
\end{align*}
$$

The LDG method

－we rewrite the equation（1）as a first order system：

$$
\begin{aligned}
& u-r_{x}=q \\
& r-u_{x}=0
\end{aligned}
$$

－q is assumed known and we would want to solve for u ．The LDG method is formulated as follows：find $u_{h}, r_{h} \in V_{h}$ such that，for all test functions $\rho, \phi \in V_{h}$ ，

$$
\begin{aligned}
& \int_{I_{j}} u_{h} \rho d x+\int_{I_{j}} r_{h} \rho_{x} d x-\left(\widehat{r}_{h} \rho^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{r}_{h} \rho^{+}\right)_{j-\frac{1}{2}}=\int_{I_{j}} q_{h} \rho d x, \\
& \int_{I_{j}} r_{h} \phi d x+\int_{I_{j}} u_{h} \phi_{x} d x-\left(\widehat{u}_{h} \phi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{u}_{h} \phi^{+}\right)_{j-\frac{1}{2}}=0 .
\end{aligned}
$$

－Numerical flux：$\widehat{r}_{h}=r_{h}^{-}, \quad \widehat{u}_{h}=u_{h}^{+}$．

The LDG method（continued）
－For the equation（2），we can also rewrite it into a first order system：

$$
\begin{array}{r}
q_{t}+f(u)_{x}-p_{x}+B(r)_{x}=0, \\
p-(b(r) u)_{x}=0, \\
r-u_{x}=0,
\end{array}
$$

where $B(r)=\frac{1}{2} r^{2}$ and $b(r)=B^{\prime}(r)=r$ ．

The LDG method（continued）

－Now we can define a local discontinuous Galerkin method， resulting in the following scheme：find $q_{h}, p_{h}, r_{h} \in V_{h}$ such that，for all test functions $\varphi, \psi, \eta \in V_{h}$ ，

$$
\begin{aligned}
& \int_{l_{j}}\left(q_{h}\right)_{t} \varphi d x-\int_{l_{j}}\left(f\left(u_{h}\right)-p_{h}+B\left(r_{h}\right)\right) \varphi_{x} d x \\
& +\left(\left(\widehat{f}-\widehat{p}_{h}+\widehat{B\left(r_{h}\right)}\right) \varphi^{-}\right)_{j+\frac{1}{2}}-\left(\left(\widehat{f}-\widehat{p}_{h}+\widehat{B\left(r_{h}\right)}\right) \varphi^{+}\right)_{j-\frac{1}{2}}=0, \\
& \int_{I_{j}} p_{h} \psi d x+\int_{I_{j}} b\left(r_{h}\right) u_{h} \psi_{x} d x-\left(\widehat{b\left(r_{h}\right)} \widetilde{u}_{h} \psi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{b\left(r_{h}\right)} \widetilde{u}_{h} \psi^{+}\right)_{j-\frac{1}{2}}=0, \\
& \int_{l_{j}} r_{h} \phi d x+\int_{l_{j}} u_{h} \eta_{x} d x-\left(\widehat{u}_{h} \eta^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{u}_{h} \eta^{+}\right)_{j-\frac{1}{2}}=0 .
\end{aligned}
$$

Numerical flux

－Alternate numerical fluxes

$$
\widehat{p}_{h}=p_{h}^{-}, \widehat{u}_{h}=u_{h}^{+}, \widehat{B\left(r_{h}\right)}=B\left(r_{h}^{-}\right), \widetilde{u}_{h}=u_{h}^{+} .
$$

－Central numerical flux

$$
\widehat{b\left(r_{h}\right)}=\frac{B\left(r_{h}^{+}\right)-B\left(r_{h}^{-}\right)}{r_{h}^{+}-r_{h}^{-}}
$$

－$\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$
－Central numerical flux：

$$
\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)=\frac{1}{2}\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)\right),
$$

－Lax－Friedrichs flux

$$
\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)=\frac{1}{2}\left(f\left(u_{h}^{-}\right)+f\left(u_{h}^{+}\right)-\alpha\left(u_{h}^{+}-u_{h}^{-}\right)\right), \quad \alpha=\max \left|f^{\prime}\left(u_{h}\right)\right|
$$

Algorithm flowchart

－We obtain q_{h} in the following matrix form

$$
\boldsymbol{q}_{h}=\mathbf{A} \boldsymbol{u}_{h}
$$

－we obtain the LDG discretization of the residual $-f(u)_{x}+\frac{1}{2}\left(u^{2}\right)_{x x x}-\frac{1}{2}\left(\left(u_{x}\right)^{2}\right)_{x}$ in the vector form

$$
\left(\boldsymbol{q}_{h}\right)_{t}=\operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

－We then combine the above two equation to obtain

$$
\mathbf{A}\left(\boldsymbol{u}_{h}\right)_{t}=\operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

－We use a time discretization method to solve

$$
\left(\boldsymbol{u}_{h}\right)_{t}=\mathbf{A}^{-1} \mathbf{r e s}\left(\boldsymbol{u}_{h}\right) .
$$

L^{2} stability of the LDG method
The solution to the LDG schemes for the Camassa－Holm equation satisfies the L^{2} stability
－$\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$：central numerical flux

$$
\frac{d}{d t} \int_{0}^{L}\left(u_{h}^{2}+r_{h}^{2}\right) d x=0
$$

－$\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$：Lax－Friedrichs flux

$$
\frac{d}{d t} \int_{0}^{L}\left(u_{h}^{2}+r_{h}^{2}\right) d x \leq 0
$$

The main error estimate result
Let u be the exact solution of the Camassa－Holm equation，which is sufficiently smooth with bounded derivatives，and assume $f \in C^{3}$ ．For regular triangulations of $I=(0,1)$ ，if the finite element space V_{h} is the piecewise polynomials of degree $k \geq 2$ ， then for small enough h there holds the following error estimates

$$
\begin{equation*}
\left\|u-u_{h}\right\|^{2}+\left\|r-r_{h}\right\|^{2} \leq C h^{2 k} \tag{3}
\end{equation*}
$$

where the constant C depends on the final time $T, k,\|u\|_{k+1}$ ， $\|r\|_{k+1}$ and the bounds on the derivatives $\left|f^{(m)}\right|, m=1,2,3$ ．Here $\|u\|_{k+1}$ and $\|r\|_{k+1}$ are the maximum over $0 \leq t \leq T$ of the standard Sobolev $k+1$ norm in space．

Remark

－Although we could not obtain the optimal error estimates $O\left(h^{k+1}\right)$ for u due to some extra boundary terms arising from high order derivatives，numerical examples verify the optimal order $O\left(h^{k+1}\right)$ for u ．
－For the solution r_{h} ，our numerical results indicate that k－th order accuracy is sharp．

Main difficulty of the proof
－Nonlinear term．
－Lack of control on some of the jump terms at cell boundaries for high order derivatives term．
－Special projection is introduce to handle troublesome jump terms in the error equation．
－It is more challenging to perform L^{2} a priori error estimates for nonlinear PDEs with high order derivatives than for first order hyperbolic PDEs
（1）Introduction to local discontinuous Galerkin（LDG）methods
（2）The LDG method for the Camassa－Holm equation
（3）LDG method for the Degasperis－Procesi equation

4 Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

NIVERSITY
OFSCIFVCE A TECHVOLOG
OF

Degasperis－Procesi equation

$$
u_{t}-u_{t x x}+4 f(u)_{x}=f(u)_{x x x}
$$

where $f(u)=\frac{1}{2} u^{2}$ ．
－DP equation support peakon solutions and shock solutions．
－The lack of smoothness of the solution introduces more difficulty in the numerical computation．

Energy

Camassa－Holm（CH）equation

$$
H_{2}(u)=\int_{R}\left(u^{2}+u_{x}^{2}\right) d x
$$

Degasperis－Procesi（DP）equation

$$
E_{2}(u)=\int_{R}\left(u-u_{x x}\right) v d x, \quad 4 v-\partial_{x}^{2} v=u
$$

Numerical difficulty

－Conservation laws of the DP equation are much weaker than those of the CH equation
－The conservation laws $E_{i}(u)$ can not guarantee the boundedness of the slope of a wave in the L^{2}－norm．
－There is no way to find conservation laws controlling the H^{1}－norm，which plays a very important role in studying the CH equation．
L^{2} stability
－Auxiliary variable v which satisfies the following equation

$$
4 v-v_{x x}=u
$$

－Another form of the energy $E_{2}(u)$

$$
\frac{d}{d t} \int_{\Omega}\left(2 v^{2}+\frac{5}{2}\left(v_{x}\right)^{2}+\frac{1}{2}\left(v_{x x}\right)^{2}\right) d x=0
$$

－L^{2} stability of u ，i．e．

$$
\|u\|_{L^{2}(R)} \leqslant 2 \sqrt{2}\left\|u_{0}\right\|_{L^{2}(R)} .
$$

LDG scheme（I）based on dispersive form
We write the DP equation in the following form

$$
\begin{align*}
& u-u_{x x}=q \tag{4}\\
& q_{t}+4 f(u)_{x}=f(u)_{x x x} . \tag{5}
\end{align*}
$$

The LDG method（I）continued

－we rewrite the equation（4）as a first order system：

$$
\begin{aligned}
& q-r_{x}=0, \\
& r-u_{x}=0 .
\end{aligned}
$$

－q is assumed known and we would want to solve for u ．The LDG method is formulated as follows：find $u_{h}, r_{h} \in V_{h}$ such that，for all test functions $\rho, \phi \in V_{h}$ ，

$$
\begin{aligned}
& \int_{I_{j}} q_{h} \rho d x+\int_{I_{j}} r_{h} \rho_{x} d x-\left(\widehat{r}_{h} \rho^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{r}_{h} \rho^{+}\right)_{j-\frac{1}{2}}=0, \\
& \int_{I_{j}} r_{h} \phi d x+\int_{I_{j}} u_{h} \phi_{x} d x-\left(\widehat{u}_{h} \phi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{u}_{h} \phi^{+}\right)_{j-\frac{1}{2}}=0 .
\end{aligned}
$$

－Numerical flux：$\widehat{r}_{h}=r_{h}^{-}, \quad \widehat{u}_{h}=u_{h}^{+}$．

The LDG method（I）continued
For the equation（5），we can also rewrite it into a first order system：

$$
\begin{array}{r}
q_{t}+4 s-p_{x}=0, \\
p-s_{X}=0, \\
s-f(u)_{x}=0
\end{array}
$$

The LDG method（I）continued

Find $q_{h}, p_{h}, s_{h} \in V_{h}$ such that，$\forall \varphi, \psi, \eta \in V_{h}$ ，

$$
\begin{aligned}
& \int_{l_{j}}\left(q_{h}\right)_{t} \varphi d x+\int_{l_{j}} 4 s_{h} \varphi d x+\int_{l_{j}} p_{h} \varphi_{x} d x-\left(\widehat{p}_{h} \varphi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{p}_{h} \varphi^{+}\right)_{j-\frac{1}{2}}=0, \\
& \int_{I_{j}} p_{h} \psi d x+\int_{l_{j}} s_{h} \psi_{x} d x-\left(\widehat{s_{h}} \psi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{s_{h}} \psi^{+}\right)_{j-\frac{1}{2}}=0 \\
& \int_{I_{j}} s_{h} \eta d x+\int_{I_{j}} f\left(u_{h}\right) \eta_{x} d x-\left(\widehat{f} \eta^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{f} \eta^{+}\right)_{j-\frac{1}{2}}=0 .
\end{aligned}
$$

The numerical fluxes are chosen as

$$
\widehat{p}_{h}=p_{h}^{-}, \widehat{s}_{h}=s_{h}^{+},
$$

and $\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$is a central flux or Lax－Friedrichs flux．

Algorithm flowchart（I）

－We obtain q_{h} in the following matrix form

$$
\boldsymbol{q}_{h}=\mathbf{A} \boldsymbol{u}_{h}
$$

－we obtain the LDG discretization of the residual $4 f(u)_{x}-f(u)_{x x x}$ in the vector form

$$
\left(\boldsymbol{q}_{h}\right)_{t}=\operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

－We then combine the above two equation to obtain

$$
\mathbf{A}\left(\boldsymbol{u}_{h}\right)_{t}=\operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

－We use a time discretization method to solve

$$
\left(\boldsymbol{u}_{h}\right)_{t}=\mathbf{A}^{-1} \operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

LDG scheme（II）based on hyperbolic－elliptic form
We write the DP equation in the following form

$$
\begin{aligned}
u_{t}+f(u)_{x}+p & =0 \\
p-p_{x x} & =3 f(u)_{x}
\end{aligned}
$$

We rewrite the equation as a first order system：

$$
\begin{aligned}
u_{t}+q+p & =0 \\
p-s_{x} & =3 q \\
s-p_{x} & =0 \\
q-f(u)_{x} & =0
\end{aligned}
$$

LDG scheme（II）continued

Find $u_{h}, s_{h}, p_{h}, q_{h} \in V_{h}$ such that，$\forall \varphi, \psi, \eta \in V_{h}$ ，

$$
\begin{aligned}
& \int_{I_{j}}\left(u_{h}\right)_{t} \varphi d x+\int_{I_{j}}\left(q_{h}+p_{h}\right) \varphi d x=0, \\
& \int_{I_{j}} p_{h} \psi d x+\int_{I_{j}} s_{h} \psi_{x} d x-\left(\widehat{s}_{h} \psi^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{s}_{h} \psi^{+}\right)_{j-\frac{1}{2}}=3 \int_{I_{j}} q_{h} \psi d x, \\
& \int_{I_{j}} s_{h} \eta d x+\int_{I_{j}} p_{h} \eta_{x} d x-\left(\widehat{p}_{h} \eta^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{p}_{h} \eta^{+}\right)_{j-\frac{1}{2}}=0, \\
& \int_{I_{j}} q_{h} \rho d x+\int_{I_{j}} f\left(u_{h}\right) \rho_{x} d x-\left(\widehat{f} \rho^{-}\right)_{j+\frac{1}{2}}+\left(\widehat{f} \rho^{+}\right)_{j-\frac{1}{2}}=0 .
\end{aligned}
$$

Numerical fluxes are chosen as

$$
\widehat{p}_{h}=p_{h}^{-}, \widehat{s}_{h}=s_{h}^{+} .
$$

Here $\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$is a central flux or Lax－Friedrichs flux．

Algorithm flowchart（II）

－Given the solution u_{h} at time level n ，we first get \boldsymbol{q}_{h} ．

$$
\boldsymbol{q}_{h}=\operatorname{res}\left(\boldsymbol{u}_{h}\right)
$$

－We obtain p_{h} in the following matrix form

$$
\boldsymbol{p}_{h}=3 \mathbf{A}^{-1} \boldsymbol{q}_{h} .
$$

－Using the solution $\boldsymbol{q}_{h}, \boldsymbol{p}_{h}$ to computing discretization of the residual $p+q$ ，then we obtain

$$
\left(\boldsymbol{u}_{h}\right)_{t}=\boldsymbol{q}_{h}+\boldsymbol{p}_{h}
$$

Any standard ODE solvers can be used here，for example the Runge－Kutta methods．

Stability of the LDG method（I）and（II）

－Energy stability of the solution v_{h}
－$\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$：central numerical flux

$$
\frac{d}{d t} \int_{\Omega}\left(2 v_{h}^{2}+\frac{5}{2} w_{h}^{2}+\frac{1}{2} z_{h}^{2}\right) d x=0 .
$$

－$\widehat{f}\left(u_{h}^{-}, u_{h}^{+}\right)$：Lax－Friedrichs flux

$$
\frac{d}{d t} \int_{\Omega}\left(2 v_{h}^{2}+\frac{5}{2} w_{h}^{2}+\frac{1}{2} z_{h}^{2}\right) d x \leq 0 .
$$

where w_{h} and z_{h} are approximation of v_{x} and $v_{x x}$ ．
－L^{2} stability of solution u_{h}

$$
\left\|u_{h}\right\|_{L^{2}(\Omega)} \leq 2 \sqrt{2}\left\|u_{0}\right\|_{L^{2}(\Omega)}
$$

Total variation bounded property for the P^{0} case

$$
\operatorname{TVM}\left(u_{h}^{n}\right) \leqslant \exp (C T) \operatorname{TVM}\left(u^{0}\right)
$$

where $\operatorname{TVM}\left(u_{h}\right)=\sum_{j=1}^{J}\left|\Delta_{+} u_{j}\right|$ ．

Outline

（1）Introduction to local discontinuous Galerkin（LDG）methods

（2）The LDG method for the Camassa－Holm equation

3 LDG method for the Degasperis－Procesi equation
（4）Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

Smooth solution

Smooth traveling waves are solution of the form

$$
u(x, t)=\phi(x-c t)
$$

where ϕ is solution of second－order ordinary differential equation

$$
\phi_{x x}=\phi-\frac{\alpha}{(\phi-c)^{2}} .
$$

$\alpha=c=3$ ．The initial conditions for ϕ is

$$
\phi(0)=1, \quad \frac{d \phi}{d x}(0)=0 .
$$

It gives rise to a smooth traveling wave with period $a \simeq 6.46954603635$ ．

Table：Accuracy test for the CH equation．Periodic boundary condition． Uniform meshes with N cells at time $t=0.5$ ．

		$U-U_{h}$				$r-r_{h}$			
	N	L^{2} error	order	L^{∞} error	order	L^{2} error	order	L^{∞} error	order
P^{0}	10	$1.42 \mathrm{E}-01$	-	$3.08 \mathrm{E}-01$	-	$1.42 \mathrm{E}-01$	-	$3.08 \mathrm{E}-01$	-
	20	$7.95 \mathrm{E}-02$	0.84	$1.77 \mathrm{E}-01$	0.80	$7.95 \mathrm{E}-02$	0.83	$1.77 \mathrm{E}-01$	0.57
	40	$4.23 \mathrm{E}-02$	0.91	$9.41 \mathrm{E}-01$	0.91	$4.23 \mathrm{E}-02$	0.94	$9.41 \mathrm{E}-02$	0.87
	80	$2.18 \mathrm{E}-02$	0.95	$4.83 \mathrm{E}-02$	0.96	$2.18 \mathrm{E}-02$	0.98	$4.83 \mathrm{E}-02$	0.97
P^{1}	10	$1.16 \mathrm{E}-02$	-	$6.63 \mathrm{E}-02$	-	$1.16 \mathrm{E}-02$	-	$6.63 \mathrm{E}-02$	-
	20	$3.12 \mathrm{E}-03$	1.90	$1.86 \mathrm{E}-02$	1.84	$3.12 \mathrm{E}-03$	0.68	$1.86 \mathrm{E}-02$	0.24
	40	$8.05 \mathrm{E}-04$	1.95	$4.76 \mathrm{E}-03$	1.96	$8.05 \mathrm{E}-04$	0.85	$4.76 \mathrm{E}-03$	0.63
	80	$2.04 \mathrm{E}-04$	1.98	$1.19 \mathrm{E}-02$	2.00	$2.04 \mathrm{E}-04$	0.93	$1.19 \mathrm{E}-03$	0.87
P^{2}	10	$1.41 \mathrm{E}-03$	-	$6.75 \mathrm{E}-03$	-	$1.41 \mathrm{E}-03$	-	$6.75 \mathrm{E}-03$	-
	20	$1.49 \mathrm{E}-04$	3.24	$9.06 \mathrm{E}-04$	2.90	$1.49 \mathrm{E}-04$	2.64	$9.06 \mathrm{E}-04$	2.64
	40	$1.70 \mathrm{E}-05$	3.13	$9.85 \mathrm{E}-05$	3.20	$1.70 \mathrm{E}-05$	2.06	$9.85 \mathrm{E}-05$	1.45
	50	$8.95 \mathrm{E}-06$	2.88	$4.96 \mathrm{E}-05$	3.07	$8.95 \mathrm{E}-06$	1.95	$4.96 \mathrm{E}-05$	1.77

Peakon solution

In the single peak case，the initial condition is

$$
u_{0}(x)= \begin{cases}\frac{c}{\cosh (a / 2)} \cosh \left(x-x_{0}\right), & \left|x-x_{0}\right| \leq a / 2 \\ \frac{c}{\cosh (a / 2)} \cosh \left(a-\left(x-x_{0}\right)\right), & \left|x-x_{0}\right|>a / 2\end{cases}
$$

where x_{0} is the position of the trough and a is the period．We present the wave propagation for the CH equation with parameters $c=1, a=30$ and $x_{0}=-5$ ．The computational domain is $[0, a]$ ． P^{5} element with $N=320$ cells．

中国紏学技求大学

Yan Xu, USTC

Two－peakon interaction

In this example we consider the two－Peakon interaction of the CH equation with the initial condition

$$
u_{0}(x)=\phi_{1}(x)+\phi_{2}(x)
$$

where

$$
\phi_{i}(x)=\left\{\begin{array}{ll}
\frac{c_{i}}{\cosh (a / 2)} \cosh \left(x-x_{i}\right), & \left|x-x_{i}\right| \leq a / 2 \\
\frac{c_{i}}{\cosh (a / 2)} \cosh \left(a-\left(x-x_{i}\right)\right), & \left|x-x_{i}\right|>a / 2
\end{array} \quad i=1,2\right.
$$

The parameters are $c_{1}=2, c_{2}=1, x_{1}=-5, x_{2}=5, a=30$ ．The computational domain is $[0, a]$ ．P^{5} element with $N=320$ cells．

Yan Xu, USTC

Three－peakon interaction

In this example we consider the three－Peakon interaction of the CH equation with the initial condition

$$
u_{0}(x)=\phi_{1}(x)+\phi_{2}(x)+\phi_{3}(x),
$$

where $\phi_{i}, i=1,2,3$ are defined as before．The parameters are $c_{1}=2, c_{2}=1, c_{3}=0.8, x_{1}=-5, x_{2}=-3, x_{3}=-1, a=30$ ． The computational domain is $[0, a]$ ．P^{5} element with $N=320$ cells．

Yan Xu, USTC

Solution with a discontinuous derivative
In this example we consider a initial data function u_{0} which has a discontinuous derivative．The initial condition is

$$
u_{0}(x)=\frac{10}{(3+|x|)^{2}}
$$

The computational domain is $[-30,30] . P^{2}$ element with $N=640$ ．

Yan Xu, USTC

Break up of the plateau traveling wave
A cut－off peakon，i．e．a plateau function $u(x, t)=\phi(x-c t)$ with

$$
\phi(x)= \begin{cases}c e^{x+k}, & x \leq-k \\ c, & |x| \leq k \\ c e^{-x+k}, & x \geq k\end{cases}
$$

We put $c=0.6$ and $k=5$ ．The computational domain is
［ $-40,40]$ ．P^{2} element with $N=800$ cells．

Yan Xu, USTC

Outline

（1）Introduction to local discontinuous Galerkin（LDG）methods
（2）The LDG method for the Camassa－Holm equation

3 LDG method for the Degasperis－Procesi equation
（4）Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

Accuracy test

Table: Accuracy test for the DP equation with the exact solution $u(x, t)=c e^{-|x-c t|}$. Periodic boundary condition. $c=0.25$. Uniform meshes with N cells at time $t=1$.

	N	Scheme (1)				Scheme (II)			
		L^{2} error	order	L^{∞} error	order	L^{2} error	order	L^{∞} error	order
p^{0}	20	$6.62 \mathrm{E}-03$	-	$6.84 \mathrm{E}-02$	-	$6.62 \mathrm{E}-03$	-	$6.84 \mathrm{E}-02$	-
	40	$1.98 \mathrm{E}-03$	1.74	$2.18 \mathrm{E}-02$	1.65	$1.98 \mathrm{E}-03$	1.74	$2.18 \mathrm{E}-02$	1.65
	80	$8.56 \mathrm{E}-04$	1.21	1.02E-02	1.09	8.56E-04	1.21	$1.02 \mathrm{E}-02$	1.09
	160	$4.76 \mathrm{E}-04$	0.85	$6.39 \mathrm{E}-03$	0.68	$4.76 \mathrm{E}-04$	0.85	$6.39 \mathrm{E}-03$	0.68
p^{1}	20	$2.31 \mathrm{E}-03$	-	$3.19 \mathrm{E}-02$	-	$2.31 \mathrm{E}-03$	-	$3.19 \mathrm{E}-02$	-
	40	$1.73 \mathrm{E}-04$	3.74	$2.42 \mathrm{E}-03$	3.71	$1.73 \mathrm{E}-04$	3.74	$2.43 \mathrm{E}-03$	3.71
	80	$3.92 \mathrm{E}-05$	2.14	$5.31 \mathrm{E}-04$	2.19	3.92E-05	2.14	$5.31 \mathrm{E}-04$	2.19
	160	$1.08 \mathrm{E}-05$	1.86	$1.88 \mathrm{E}-04$	1.50	$1.08 \mathrm{E}-05$	1.86	$1.88 \mathrm{E}-04$	1.50
p^{2}	20	3.90E-04	-	$6.61 \mathrm{E}-03$	-	3.90E-04	-	$6.61 \mathrm{E}-03$	-
	40	$3.35 \mathrm{E}-05$	3.54	$5.25 \mathrm{E}-04$	3.93	$3.35 \mathrm{E}-05$	3.54	$4.33 \mathrm{E}-04$	3.93
	80	$4.07 \mathrm{E}-06$	3.04	$5.25 \mathrm{E}-05$	3.04	4.07E-06	3.04	$5.25 \mathrm{E}-05$	3.04
	160	$5.77 \mathrm{E}-07$	2.82	7.13E-06	2.88	5.77E-07	2.82	7.13E-06	2.88
p^{3}	10	$1.49 \mathrm{E}-03$	-	$1.77 \mathrm{E}-02$	-	$1.49 \mathrm{E}-03$	-	$1.77 \mathrm{E}-02$	-
	20	$1.51 \mathrm{E}-04$	3.30	$2.69 \mathrm{E}-03$	2.72	$1.51 \mathrm{E}-04$	3.30	$2.69 \mathrm{E}-03$	2.72
	40	7.64E-06	4.30	$1.32 \mathrm{E}-04$	4.35	7.64E-06	4.31	$1.32 \mathrm{E}-04$	4.36
	80	$1.60 \mathrm{E}-07$	5.58	2.13E-06	5.95	$1.60 \mathrm{E}-07$	5.58	$2.13 \mathrm{E}-06$	5.95
p^{4}	10	7.07E-03	-	7.09E-02	-	7.07E-03	-	7.09E-02	-
	20	$1.72 \mathrm{E}-04$	5.36	$2.75 \mathrm{E}-03$	4.69	$1.72 \mathrm{E}-04$	5.36	$2.76 \mathrm{E}-03$	4.68
	40	$4.68 \mathrm{E}-06$	5.20	$8.45 \mathrm{E}-05$	5.02	$4.68 \mathrm{E}-06$	5.20	$8.45 \mathrm{E}-05$	5.03
	80	$8.30 \mathrm{E}-08$	5.82	$1.31 \mathrm{E}-06$	6.01	8.30E-08	5.82	$1.31 \mathrm{E}-06$	6.01

Peakon solution

Figure：The peakon profile of the DP equation with the exact solution $u(x, t)=e^{-|x-t|}$ ．Periodic boundary condition in［－40，40］．P^{4} elements and a uniform mesh with $N=228$ cells．

Two－peakon interaction

Figure：The two－anti－peakon interaction of the DP equation．Periodic boundary condition in $[-40,40]$ ．P^{3} elements and a uniform mesh with $N=512$ cells．

Shock peakon solution

Figure：Shock peakon solution of the DP equation with the exact solution $u(x, t)=-\operatorname{sign}(x) e^{-|x|} /(1+t)$ ．Periodic boundary condition in ［ $-30,30$ ］．P^{4} elements and a uniform mesh with $N=228$ cells．

Shock formation

Figure：Shock formation of the DP equation with the initial condition $u_{0}(x)=e^{0.5 x^{2}} \sin (\pi x)$ ．Periodic boundary condition in $[-2,2] . P^{3}$ elements and a uniform mesh with $N=100$ cells．

Peakon and anti－Peakon interaction（Symmetric）

Figure：Symmetric peak and antipeak interaction of the DP equation． Periodic boundary condition in $[-25,25]$ ．P^{3} elements and a uniform mesh with $N=256$ cells．

Peakon and anti－Peakon interaction（Nonsymmetric）

Figure：Nonsymmetric peak and antipeak interaction of the DP equation．Periodic boundary condition in $[-25,25]$ ．P^{3} elements and a uniform mesh with $N=256$ cells．

Triple interaction

Figure：Peakon，shock peakon and anti－peakon of the DP equation． Periodic boundary condition in［ $-25,25$ ］．P^{3} elements and a uniform mesh with $N=256$ cells．
（1）Introduction to local discontinuous Galerkin（LDG）methods
（2）The LDG method for the Camassa－Holm equation
（3）LDG method for the Degasperis－Procesi equation
（4）Numerical results
－Numerical results for the CH equation
－Numerical results for Degasperis－Procesi equation
（5）Conclusion and future work

NIVERSITY

Conclusion

－LDG methods to solve the nonlinear equation．
－Stability is proven for the schemes for general solutions ．
－Numerical examples are given to illustrate the accuracy and capability of the methods．

Future work
－Total variation bounded property for the high order case．
－a priori error estimates of numerical solutions．

Reference

More information about the algorithm and theoretical analysis can be found in：
http：／／staff．ustc．edu．cn／${ }^{\sim} y x u /$

[^0]: 中国䋖学呚求大学

